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1.  Introduction and Summary 

Readiness evaluation is one of the most important problem areas in 

the study of complex military systems.  Such studies usually encompass a 

large number of measurements on the performance of the various subsystems 

and then attempt to construct reasonable models that relate the evaluation 

indices of the subsystems in a meaningful functional manner.  This is 

indeed very often a formidable task due to the complexity and multiplicity 

of variables and functions.  However, it is often the case that many of the 

measured variables correlate with each other.  These intercorrelations 

reveal that variables contain some information on each other.  Accordingly, 

if these intercorrelations can be utilized in a manner that allows con- 

siderable reduction in the number of factors to be considered, without much 

loss in the information in the original data, a significant step can be 

taken towards simplification of the problem.  The present paper applies 

several well-known multivariate statistical methods to attain this goal. 

The main objective of the present paper is to discuss what some of the 

available multivariate statistical methods can attain and to show that such 

methods can be easily Implemented by utilizing appropriate computer 
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packages.  In particular, we discuss the methods of principal and rotated 

factor analysis, and discriminant analysis.  We apply these methods to 

simulated data on 21 operational readiness variables related to Navy des- 

troyers.  The variables and the corresponding parameters were taken from 

the Institute of Naval Studies study [5].  This study analyzes actual data 

collected over several years on 83 destroyers.  It extends to various 

aspects of the readiness problem and relates operational readiness to mate- 

rial readiness.  As mentioned in our recent survey paper [3], we believe 

that study [5] is of fundamental importance.  It employs a variety of multi- 

variate statistical procedures in a penetrating manner and provides a sound 

analysis of complicated problems.  Our intention is not to duplicate that 

study but to provide an exposition on the application of the multivariate 

methods mentioned above.  We have chosen to create data sets by simulation 

and not to use actual data since in this way we can generate data following 

multivariate normal distributions having specific structures.  Thus, by 

applying the multivariate methods on different sets of simulated data we 

can illustrate the strength of the methods and what can actually be achieved. 

We will show that the systems (destroyers) in this example can be classified 

according to the values of two or three factor scores, which relate all 21 

variables in an orthogonal fashion.  The factor scores can be graphed and 

their periodic determination can provide important follow-up on the state 

of readiness.  Statistical control charts can be devised to provide early 

detection of deterioration in the state of readiness.  Similarly, if the 

data consists of a mixture of two or more samples from different multivariate 

populations, the plotting of factor scores obtained by a factor-analysis 

of the whole data set can reveal the existence of different clusters.  These 

ideas will be demonstrated in the present paper.  We start in Section 2 with 

a description of the simulations and the structure of the data sets.  Sec- 

tion 3 is devoted to principal and rotated factor analysis.  In Section 4 

we discuss the application of factor analysis to detecting changes in the 

state of readiness of systems.  Here we also compare discrimination and 

classification based on the factor scores to those obtained by step-wise 

discriminant analysis.  The mathematical development is presented in 

appendices.  We also provide some computer programs. 
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2,  Simulating Data Sets 

In the present study we construct data sets on the basis of the 

operational readiness indices, ORI, of the following 21 variables. 

v    Ship control SHC 

v Navigation NAV 

v    Surface operations - CIC SOPS 
(Combat Information Center) 

v.    Battle communications BATC 
4 

vr   Surface gunnery (non-firing) SGUN 

v,   AAW (Anti-air Warfare) - CIC AAWC 
6 

v    AAW - Weapons control AAWN 

v    Engineering ENG 
o 

v    Setting material condition SMC 

Damage control DC 

NBC (Nuclear, biological, and chemical)   NBC 

Low-visibility piloting LVP 

CIC - Assistance in piloting CICAP 

CIC - Assistance in ASW CICASW 
(Anti-submarine warfare) 

ECM (Electronic countermeasures) ECM 

Modified full-power run BFPR 

Surface firing SFIR 

AA firing AAF 

Gunfire support GUNS 

Communications COMM 

ASW operations ASW 

10 
rll 
712 

'13 

'14 

16 

'17 

'IS 

'19 

'20 
721 

The raw scores obtained on these variables by the 83 ships during 

training can be obtained in the Institute of Naval Studies [5].  We consider 

rather the OKI's which are indices obtained from the raw scores by the 

transformation 

ORI = 5 + 2 (NSCORE) (2.1) 
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the NSCORE corresponding to x,..  is  z ..- = $ 

where NSCORE denotes the standard normal fractile corresponding to the 

percentile point of the raw score.  More precisely, if x,1N < ... < x, 
(l; -    =  (n) 

is the order statistic of a sample of n observations on a variable x , 

■(i)  " "(i)   '  \n+l) » i = i"-"11 5 

where $(z)  is the standard normal C.D.F.  Theoretically the OKI values, 

of each of the variables v.  (i=l,...,21) , are normally distributed 

with mean  E{v.} = 5  (i=l,...21) and variance Var{v.} = 4  (i=l,...21). 
i i 

In addition, the OKI variables,  v.  , are not independent.  We assume 

T 
that the vector v = [vn,...,V-.]  has a multinormal distribution 

TJ     1     21 
T 

NCu,/) , with mean vector u = 5191, where  1 = [1,...,1] , and covariance 

matrix  Z = 4R where  R  denotes the matrix of intercorrelations among 

the 21 variables v. .  For the purpose of simulating data sets we have 

used the matrix R given in the Institute of Naval Studies [5] and pre- 

sented here in Table 1.  The simulation was performed according to an 

algorithm described in Appendix I.  It is based on simulating independent 

standard normal variates,  z  , and transforming them to corresponding v. 

variates  (i=l,...,21) by employing recursive relations between joint and 

conditional multinormal distributions.  A Fortran program for such simulation 

is given in Appendix IV.  In Table 2 we present a sample of n = 50 vectors 

of six variables (v, , v_, v,, v_. v. „, v, .) simulated according to this pro- 
1   5   o   7   12   14 

gram.  The sample means, standard deviations and intercorrelations are pro- 

vided in Table 3.  As illustrated, the sample statistics are generally 

deviating to some extent (according to their sampling distributions) from 

the parameters used.  However, in actual cases the population parameters 

are unknown and the analysis must be based exclusively on the sample values, 

with the possible incorporation of some prior information, and this is what 

we are doing here. 



TABLE 1 

INTERCORRELATIONS BETTOEN 
OKI VARIABLES V to v 
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1 1 . 0 0 0.17 0.27 0. 04 0.33 0. 31 0.45 0. 1 0 0. 06 0. 03 
0. 03 0. 32 0.36 0. 06 0. 17 0. 16 0. 07 0. 12 0. 03 0. 01 0. 10 

c 0. 17 1. 0 0 0. ££ 0. 06 0. 13 0. 03 0.14 0. ££ 0. 01 0. £ 0 

0. 04 0. 12 0. 14 0. £6 0. 01 0. 07 0. 03 0. 09 0. 09 0. 03 0. 13 
3 0. 27 0. £2 1. 0 0 0. 06 0. 13 0. 03 0. 14 0.22 0. 01 0. £ 0 

0. 04 0. 1 £ 0.14 0. £6 0. 01 0. 07 0. 02 0. 09 0. 09 0. 03 0. 13 

4 0. 04 0. 06 0. 09 1 . 0 0 0. £3 0. 23 0. 13 0. 11 0. 13 0. 1 0 

0. 03 0.12 0.35 0. 03 0. 19 0. £5 0. 03 0. 1 0 0. 03 0. 04 0. 06 
irr 0. 33 0. 13 0. 23 0. £3 1 . 0 0 0.34 0. 05 0. 03 0. 04 0. 01 

0. 12 0. 07 0. 03 0. 04 0. 04 0.35 0. 1 0 0. 3 0 0. 03 0. 13 0. 03 
O 0.31 0. 03 0. £3 0.34 0. £7 1 . 0 0 0. 29 0. 13 0. 13 0. 03 

0. 05 0. 03 0. ££ 0. 15 0. 06 0. 17 0. 13 0. 13 0. 04 0. 03 0. 10 

t" 0.45 0.14 0. 13 0. 05 0. 29 0. 36 1 . 0 0 0.17 0.17 0. 03 

0. 09 0.14 0.17 0.11 0.17 0.14 0. 01 0. 31 0. 01 0. 13 0. 03 
C; 0. 1 0 0. 22 0.11 0. 03 0. 13 0.17 0. 06 1. 0 0 0. 09 0. 1 0 

0. 00 0. £ 1 0. 4 0 0. 01 0. 03 0. 1 0 0. 17 0. 33 0. 13 0. 07 0. 03 

9 0. 06 0. 01 0. 13 0. 04 0. 13 0. 17 0. 09 0. 33 1 . 0 0 0. 13 

0. 19 0. 07 0.14 0. 04 0.14 0.31 0. 19 0. 05 0. 07 0. 13 0. 13 

10 0. 0 3 0. £ 0 0. 1 0 0. 01 0. 03 0. 03 0. 1 0 0. 13 0. 4:3 1. 0 0 

0. 68 0. 06 0. 04 0, 07 0. £ 0 0. 17 0. 03 0. 03 0. 02 0.39 0. 13 

11 0. 03 0. 04 0. 03 0.17 0. 05 0. 09 0. 0 0 0. 19 0. 69 0. 5 0 

1. 0 0 0. 1 1 0. 02 0.11 0. 03 0. 09 0. 07 0. 04 0. 13 0. 06 0. 13 

12 0.32 0. 12 0. 1 £ 0. 07 0. 03 0.14 0.31 0. 07 0. 06 0. 11 

0. 03 1. 0 0 0. 0 0 0. 06 0. 13 0.£5 0. 07 0. 07 0. 01 0. £3 0. 21 

13 0 ''-■ 6 0-14 0.35 0. 03 0.£2 0. 17 0. 4 0 0. 14 0. 04 0. 03 

0. 0 0 0.55 1 . 0 0 0. 12 0. 04 0.20 0. 11 0. 03 0.3 0 0. 17 0. 05 

14 0. 06 0.£6 0. 0 3 0. 04 0. 15 0.11 0. 01 0. 04 0. 07 0. 11 

0. 06 0. 1 £ 0. 19 1 . 0 0 0. 1 6 0. £9 0. 04 0. 03 0. 06 0. 06 0. 05 

15 0. 17 0. 01 0. 19 0. 04 0. 06 0.17 0. 03 0.14 0. 2 0 0. 03 

0. 13 0. 04 0. 16 0. 1 0 1. 0 0 0. 1 3 0.14 0. 14 0. 02 0.34 0. 51 

16 0.16 0. 07 0, £5 0. 2.5 0. 17 0. 14 0. 1 0 0.31 0. 17 0. 09 

0. 25 0. £ 0 0. £9 0. 13 0. 13 1. 0 0 0. 01 0. 14 0, 09 0.33 0. 13 
17 0. 07 0. 02 0. 03 0. 1 0 0.12 0. 01 0.17 0. 19 0. 03 0. 07 

f 

0. 07 0.11 0. 0 4 0. 14 o. oi 0. 09 1. 0 0 0. 0 0 0. 05 0.34 0. 23 

13 0. 12 0. 09 0. 1 0 0.2 0 0. 13 0. 31 0.33 0. 05 0. 03 0. 04 
0. 07 0. 03 0. 03 0. 14 0.14 0. 0 0 0. 1 0 1. 0 0 0.11 0. 04 0 12 

19 0. 03 0. 09 0. 03 0. 03 0.04 0. 01 6.12 0. 07 0. 03 0. 13 
0. 01 0.20 0. 06 0. 02 0. 09 0. 05 0. 11 0. 07 i . 0 0 0. 12 0 , 03 

£0 0. 01 0. 03 0. 04 0. 13 0. 03 0. 12 0. 07 0. 13 0. 29 0. 06 

0. 23 0. 17 0. 06 0.34 0, 23 0. £4 0.04 0. 1 £ 0. 17 1. 0 0 0 . 03 

21 0. 1 0 0. 13 0. 06 0. 02 0. 1 0 0. 03 0. 03 0. 13 0. 13 0. 13 

0.31 0. 05 0. 05 0. 51 0. 13 0.23 0.13 0. 03 0. 03 0, 09 1 . 0 0 

5 - 



T-385 

TABLE 2 

50 SIMULATED VECTORS OF SIX VARIABLES 
ACCORDING TO THE MULTINORHAL DISTRIBUTION N(51,4R) 

12 '14 
1 3. 5 03 8.269 7.'591 7.124 3.463 5.613 
Z1 

4.529 5. £94 1. 966 5.417 4.021 6.603 
-y 5.594 5.933 0.347 5.34 0 6. 141 4.522 
4 1.391 £.943 7.371 5.303 5.933 5.051 

£.631 1. 1 05 2.656 1.4 02 4. 073 4. 125 
t. 6. 337 4. £93 5.396 6.643 6.902 7.504 
l"" 4.963 6.£67 4,629 5.431 5.935 2.434 
3 £. 956 £.443 1.45 0 1.762 3.117 5. 06 0 9 3. 007 3.533 4. 034 4. 136 4.300 4.747 

10 3.961 3.451 3.935 3.774 1.771 3.134 
11 5.949 7.3 07 3.955 6.362 3.373 6.343 
12 4.933 4.9 03 3.4 09 7.55 0 4.702 6.352 
13 4. £44 4. £34 2.731 4.367 5.351 4.362 
14 3.373 3.36 0 1.7 04 4.349 4.34 0 6. 0 03 
15 5.455 £.531 9.759 4. 765 4.34 0 5.939 
16 6. 076 6.333 6.972 £.700 5.236 7. 393 
17 £. 43 0 6. 347 7. 090 1. 482 3.639 -.140 
18 4.616 3.535 5.253 7.105 5.44 0 3. 175 
19 3. 397 4. £31 3.646 5. £97 5. 0 04 7.421 
£0 7.915 5.7 03 6. 189 3.344 6.734 10. 153 
21 4.339 4.453 0.926 £.£60 3. 113 5.672 
CC 9.427 6. 974 9. 02 0 7. £65 7.532 4.959 
£3 6. 122 5.779 5. 043 6.474 5.4 05 3. 099 
£4 7. 042 6.516 2. 366 7. 566 3.579 6. 93 0 
£5 4.372 6.073 9. 149 5 oqj. 2.773 4.261 
£6 5.922 5.126 4.973 5. 062 3. 671 3.633 
C i £.336 3.512 5.607 0. 032 3.345 1.516 
CC*      i 4.6£6 3.306 4.£52 7.336 6.023 
£9 4. 0 07 3. 133 5. 365 1.313 4.39 0 1. 473 
3 0 6. 566 7.713 3.269 7.356 6.933 3.45 0 
31 3.930 5. 021 2.325 2.912 2.715 
q o 3, 079 4.357 3.930 5.727 3.746 7.437 
33 4.797 3.643 5.791 5.551 9. 067 2.724 
34        l 1. 537 -.3 07 3.601 3.556 5.196 2.714 
•Z' -' 1.722 £.33£ 3.334 1 . 992 1.319 0.916 

■ 36 £.967 3.397 1, 633 1.195 5.045 2.528 
37 4.441 3.769 6. 153 1.23 0 6. 165 4.472 
33 - 5.537 5.391 5.139 3.330 0.53 0 6. 516 
39 2.534 4.332 5.634 3.576 5.014 1.543 
40 5. 141 5. 169 2.510 2.349 4. 054 4.394 
41 5.726 £.640 6. 141 10.725 3.535 11. 3 0 0 

I 42 4.643 5.437 5.33 0 6.513 5.053 7.469 
43 7. 123 3.347 3.674 3.455 5.530 4. 176 
44 5. 103 7.733 2.357 3.357 4.193 £.373 
45 6.176 5.253 5.429 6.23 0 6.403 3.543 
46 0.606 1. 079 5.370 3.935 2.371 2.396 
47 7. 174 4.692 3.537 6.435 4.326 9.936 
43 0.549 6.349 5.639 3.537 6.54 0 2.525 
49 3.342 1.917 5. 073 4.799 2. 103 6.321 
30 5.230 6.934 1. 036 7.321 6.9 04 5. 135 

- 6 - 
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SAMPLE STATISTICS OF 
THE SIX VARIABLES IN TABLE 2 
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:rJMPLE   MEANS   AND   STAND. DEV. 
Vl V5 v6 

I i^ANS 4. 33 0 4.577 4.344 
ST. DEV3. 1 . 993 1.397 3. 130 344 

v 12 

4. 99:] 
1 . 9 1 C 

v14 

4.914 
£. 463 

CDRRELATIDNS MATRIK 

0 0 0 0 0 0 

12 
V14 

I  

« "i 0 ■—' s' r t 

. 133:9 15 

.5531 63 

. 399 0 5"? 

.5194 31 

V, V- '12 '14 

0. 535377 0. 133915 0. 553163 0 399 037 0. 519431 
1. 0 0 0 0 0 0 0. 153194 0. 363351 0 .£33443 0. 133 076 
0. 153194 1. 0 0 0 0 0 0 0. £37437 0 193637 — „ 033431 
0. 362351 0. £37437 1. 0 0 0 0 0 0 0 49£1£5 0. 617677 
0. £33443 0. 193637 0. 4931£5 1 0 0 0 0 0 0 0. £39943 
0. 133 076 -, 033431 IJ. 617677 0 £39943 1. 0 0 0 0 0 0 

It should also be remarked that the simulation is based on the matrix 

of intercorrelations of the above six variables only.  This matrix is, how- 

ever, a submatrix of that given in Table 1 and can be obtained by reading 

the appropriate rows and columns.  In the course of the present study several 

different data sets were simulated, employing the same algorithm with only 

slight modifications from case to case, as will be explained later. 

3.  Principal and Rotated Factor Analysis 

It is generally difficult to make comprehensive inference of multivariate 

data without further analysis, due to the large number of intercorrelated 

variables.  Even in the case of only six variables it will be difficult to 

discriminate between "good" and "bad" systems, just by inspecting the data 

sets, or by performing a univariate analysis on each variable separately. 

The methods of multivariate analysis are designed to provide the needed 

information in cases of many variables which are highly correlated.  In the 

- 7 - 



T-385 

present section we discuss the methods of principal and rotated factor 

analysis, and show how they can be applied to the evaluation of the readi- 

ness of systems.  An outline of the theory is given in Appendix II,  We 

refer the reader for an extensive development of the theory and computer 

programs to the books of Overall and Klett [6], Cooley and Lohnes [4], 

Tatsuoka [8], and Van de Geer [9]. 

3.1 Principal Factor Analysis 

The main objective of principal factor analysis is to provide a 

small number,  m  , of linear combinations of the original variables 

V1'''''VD  (2£m<P)  so that (i) a large proportion of the total variance of 

the original variables should be accounted for by the m transformed vari- 

ables, and (ii) the transformed variables should be uncorrelated.  It is shown 

in Appendix II that the solution of this problem is obtained by determining 

first the m largest eigenvalues of R and the corresponding eigenvectors; 

followed by determination of factor scores for each system.  Let 

A > ... > A > 0 be the eigenvalues of the p x p correlation matrix R . x -     -  p .\, 

Since R is positive definite, these eigenvalues are all real and positive 

(with probability one).  Moreover A..+*"+A = p .  Hence, choose m so that 

(A +'"+A )/p is  "close enough" to 1.  This ratio is the proportion of the 

sum of variances of v (i=l,...,p)  that is accounted for (explained) by the 

m factors.  These factors are constructed in the following manner.  Let 

J^), ,  (j=l,...,m)  be the orthonormal eigenvector of R corresponding to 

A.(j=l,...,m) .  The m factor-score variables corresponding to 

T 
^ = [v1,...,v ]  are given by 

j 

T 
where u ■ [u..,...,u ]  is a vector of standard scores corresponding 

to ^ , i.e.,  u-( = (v.-vj/s  , i = l,...,p , v.  denotes the sample 

- 8 - 



T-385 

mean ot the ith variable and  s.  designates its sample standard deviation. 

The m factor-scores are computed for each unit in the sample.  The 

sample factor-scores are uncorrelated standard scores.  The coefficients 

b .  in (3.1) (i=l,...,p) are sometimes interpretable in terms of the 

original ORI variables.  We illustrate these ideas first on the p = 6  ORI 

scores of the sample of 50 units given in Table 2.  (Further analysis of all 

21 ORI variables appears below.) The numerical results presented were 

obtained by Program SIIIU, presented in Appendix IV.  The eigenvalues and 

eigenvectors of the correlation matrix presented in Table 3 are given in 

Table 4.  These values were computed by employing a computer library sub- 

routine which determines the eigenvalues and eigenvectors of a symmetric 

matrix.  This subroutine program was merged into Program SIMU. 

TABLE  A 

EIGENVALUES AND   EIGENVECTORS  OF 
THE  CORRELATION MATRIX  IN  TABLE   3 

EIGENVflUJES   DF   CDRREL.   MATRIX 

A, 

0.334321 13006 1. 063541= 0.239473 0.7 0 0426      2.74923;: 

EIGENVECTORS 

^(5) ^(3) ^(2) fe(6) ^(4) ^(D 
u.707633 0.26672 0 -.0359 02 o .399522 -.115332 j. 5 03637 
-.329692 0.749462 0.292523 - .336753 0.026661 J. 360454- 
0. U72605 -.410353 0.755713 - 156339 -.44 0 037 j. 192362 
-.6 03214 -.2207 03 -.113193 o .54645 0 -.06759 0 j. 514023 
0.117372 -.321752 0.141075 - 231162 0.312732 J. 335733 
0.033669 -.215730 -.555123 — . 591394 -.356564 J. 4 07326  ' 

- 9 
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If we consider m=3 factor-scores in Table 4, we see that the 

proportion of explained variability is f(A1
+A2+;V3) = -78 . (In other words, 

three factor-scores out of six explain close to 80% of the correlation 

matrix ^ .)  Notice that the first factor-score,  f  , weights positively 

each one of the six ORI variables,  v^ v5, v6, v.,, v12, v..   .     However, 

variables Vj and v7 obtain weights which are about 1.22 times larger 

than those of v^,  v12 and v.,  and about 2.6 times larger than that of v  . 

In terms of the ship functions, factor f  emphasizes Ship control and 

AAW-Weapons control considerably more than AAW-CIC or Low-visibility 

piloting, etc.  The second factor-score,  f  , emphasizes v,  (AAW-CIC) 

and gives a large negative weight to v  .  The third factor-score emphasizes 

v5  (Surface gunnery) and deemphasizes Vg, v.,, v--, v,. .  Thus, the three 

dimensions of this factor analysis are:  "Ship and AAW control," "Radar and 

information communication" and "Surface gunnery."  In Table 5 we provide the 

three factor-scores of the 50 units in the sample.  Figure 1 presents a 

scattergram of f^    versus  f  .  By indicating on the scattergram the unit 

number of each point we can immediately discriminate between systems having 

high factor-scores on the two dimensions (like 30,22,2) and those having low 

factor-scores on both dimensions (like 8).  Furthermore, by indicating the 

zero lines (solid) and the lines at +1  (broken) we can obtain further 

information on the state of readiness of the systems in the sample.  For 

example, systems 47 and 41 have high scores on f..  but are in the lower tail 

of  f  .  This means that their control functions are "good" but the CIC 

functions are "bad."  Similarly, systems 27 and 17 are low on  f  but high 

on  f- .  Although this information is given also in Table 2, it is often 

confounded and obscured.  A scattergram of the factor-scores provides a 

convenient expression of the relative state of readiness of the systems. 

Suppose now that the sample of 50 systems consists of two subsamples 

from two different multinormal populations.  What will the factor scores 

reveal? To illustrate numerically the result of principal factor analysis 

on such a mixture of samples we simulated a data set in which the first 25 

- 10 - 



TABLE 5 

FACTOR-SCORES OF DATA IN TABLE 2 

T-385 

FRCTQR 

1 
o 

9 
10 
11 
12 
13 
14 
15 
16 
17 
13 
19 
3 0 
31 

30 
31 

34 

4 0 
41 
43 
43 
44 
45 
46 
47 
43 
49 
5 0 

CD RE 3 

fl 

1. 9566 
0. 035 0 
0. 3499 
-. 3353 
1. 4343 
1. 09 04 
0. 1347 
1. 3367 
0. 3 075 
-. 9964 
0, 7315 
0. 5335 
-. 3371 
-, 469 3 
0. 1561 
0. 5649 

-1. 153 0 
0. 09 07 
0. 0963 
1. 9733 
-. 7345 
1. 3651 
0. 9594 
0. 3356 
0. 3335 
0. 0 046 

■1. 5593 
0. 0335 

■1. 0137 
1. 34 03 
—.7354 
1.3313 
0.3345 

■1.5369 
■3. 0367 
-1.3431 
-.4610 
-.3461 
-.3113 

1.94 01 
0.647 0 
0.0315 
-. 1105 
0.5613 

-1.63 04 
0.9613 
-.6117 
-.664 0 
0. 759'? 

1.4457 
-1.3533 
-.9433 
0.7313 
-.3711 
-.1313 
0. 3 036 

-1.37 06 
-.345 0 
-.1731 
-.3433 
-.9534 
-.4536 

-1.4149 
1. 1333 
0.6771 
3.3953 
0.3495 

■"■« 9 3 o 3 
-.5931 

-1.4394 
1.7375 
-.4617 

-1.04 0 0 
1.6594 
0.33 0 0 
1.0576 
-.9679 
0.9316 
1.9553 
0.4495 
—.56 93 
0.9713 
-.5433 
0.0375 
-.359 0 
0.75 03 
-.3334 
1.1315 
-.5993 

-1.3501 
-.0390 
-.3 037 
0. 3 046 
0. i5633 
0.33 01 

-1.6313 
1.33 03 
-.3513 
-. 9 035 

0. cr tr •-. -. 
-'•-'CO 

0. 7455 
1. 3197 
1. 9336 

0.7144 
0.1073 
0. 333 0 
0.3737 
1.5391 
-.0196 
0.0996 
-.0 079 
-1.3039 
0.6 035 
0.9743 
-.7513 
-.3611 
-.6339 
1.153 0 
0.0577 
0. 053 0 
1.3631 
0.0677 
0.6407 
0. 17 09 
-.3610 
-.3311 
0.3934 
0.4945 
-.3 064 

-1.36 03 
-3.3614 

0. 19 03 
0.6396 
-.5110 
1.1453 
-.1333 
1.0934 

-3.9433 
-.3354 
0.3113 
3.1961 
0.0333 

-1.5515 
0.0733 
-.0 064 

-1.1043 
1.173 0 
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Figure 1.     Scattergram of  the Factor-Scores    f„ 

Versus    f,     for  the Data of Table 5. 

' 

vectors are identical with the first 25 lines of Table 2  (N(51,4R)) and 

the last 25 vectors are simulated from N(1,4R) .   The sample means, 

standard deviations, correlation matrix, eigenvalues and eigenvectors of 

these 50 vectors are given in Table 6.  The corresponding three factor- 

scores are given in Table 7.  We see in Table 6 that in such a mixture the 

correlations become larger and so is the maximal eigenvalue.  The three 

factor-scores account here for 90% of the variability reflected in R . 

In Figure 2 we provide a scattergram of f  versus f The points 
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TABLE 6 

SAMPLE STATISTICS OF A SAMPLE OF 50 UNITS 
CONSISTING OF 25 UNITS FROM N(5154R)  AND 

25 UNITS FROM N(1,4R)   % 

# 

;:RMPLE   MEflMS   RND   STftND.DE 

MEAtIS 2.360 
ST.   DEVS.      3. 107 

l' I 

013 
L_ . _i 1  1 

V6 

£.644 
3. 03 0 

v 12 V14 

j'J^' 2.914 
"7 -. --■ 
1 L-O 3.519 

::aRRELRTIDNS MATRIX 

1.00000 0  0.31133 0 ; i o 1 i 
0. 31133 0 
0. 621012 
0. 3 04749 
0. 736423 
0. 73 0947 

1.0 0 0 0 0 0 0.614419 0.7237 3 4 
0.614419 1.0 0 0 0 0 0 0.62 33 0 4 
0. 7 2 3 7 3 4 0. 6 2 3 3 04 1. 0 0 0 0 0 0 
0.667 35 9 0.592 9 3 5 0,76 3 0 2 3 
0 .611753: 0. 49 0936 0.317156 

0.3 04749  0.736423 
0.667359 
0.592935 
0, 763 023 
1 . 0 0 0 0 0 0 
0.642159  1 

EIi5SNVflLUES QF CQRREL. MRTRIX 

A5 
0.167197 

X 
3 
3039 

X 

73 0947 
611753 
49 0936 
317156 
642159 
0 0 0 0 0 0 

2 "1 A4 A6 

0369     4.4557 04      0.335945      0.121246 

IGENVECTDRS 

0.610 051 
^(3)       fe(2) 

0.£76320 -.119 073 
-.233332  0.764794 0.153765 
0. 0 30 316  -.3 9 0 337 0.7 96742 
-.693336  -.227609 -.194375 
0.1594 04  -.1470 09 0. 0 07566 
0.155249  -.335 033 -.536455 

^(1) ^(4) ^(6) 
0 433211 -.141319 -.570114 
1.1. 4 06993 -.090066 0.364232 
0, 35693 0 -.27 0797 0.071749 
0. 436357 -.0 049 06 -.43 06 02 
0. 4 04763 0.366399 0.193340 
0. 4 0 0310 -.333467 0.513236 
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TABLE 7 

FACTOR-SCORES OF 50 SYSTEMS IN MIXED SAMPLE 

FRCTDR SCORES 

fl f2 £3 
1 1.3249 0. 93 02 0.7472 
C 0.6331 -1.1033 0.5479 
3 0.7699 -1.0667 1.3573 
4 0.7072 1.1176 -1.3337 
5 -.0472 -.2299 -.7301 
6 1.3£66 -.1723 -.9 027 
? 0.3453 0.7399 0.9243 
3 -.0 05 0 -.3 0 06 -.0236 
5 0.3 0 03 -.1696 0.243 0 

10 0.1936 0.3366 0.1392 
11 1.0399 -.3159 1.3313 
12 0.9697 -.36 07 -.1956 
13 0.5917 -.3196 0.2196 
14 0.4236 -1.0336 -.1133 
15 0.9535 1.6 044 -1.9730 
16 1.1269 0.7593 0.4347 
17 0.2631 2.5942 1.1327 
18 0.7391 0.5113 -.633 0 
19 0.73 04 -.7011 -.5271 
20 1.7745 -.745 0 -.3639 
£1 0.2509 -1.03 06 0.9763 
22 1.7912 1.4666 0.2062 
23 1.2417 -.4463 -.1469 
£4 1.1033 -1.0769 0.9729 
£5 0.9771 1.9196 -.1751 
£6 -.7617 0.1372 0.6030 
£7 -1.4390 1.2432 0.2769 
£3 -.7435 -1.2636 -.1629 
29 -1.2324 0.9516 0.0151 
3 0 0. 0280 1.2930 0.5041 
31 -1.1£5 0 0.4772 0.4726 
32 -.0333 -1.1502 -.0931 
33 -.5371 0.5533 -.7421 
34 -1.5472 -.2213 -2.0362 
35 -1.32 05 0.3797 0.1596 
36 -1.43 03 -.4117 0.3546 
37 -.9047 0.6336 -.3415 
33 -.9355 -.2245 0.6433 
39 -1.1117 1.0521 0.0347 
4 0 -.9956 -.7624 1.0535 
41 0.2710 -1.7159 -3.0711 
4£ -.33 01 -.3335 -.5033 
43 -.7755 -.4413 0.4576 
44 -.3467 -.1133 2.2624 
45 -.4526 0.2396 0.2413 
46 -1.5472 0.6127 -1.5592 
47 -.3164 -1.3532 -.2355 
43 -.9539 1.1256 0.2733 
49 -1.0917 -.5511 -1.4623 
5 0 -.4574 -1.5533 1.3502 
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in Figure 2 representing systems 26-50 have been circled.  We see a very 

clear separation between the two subsamples.  Although this example may 

seem somewhat artificial it shows that principal factor analysis may reveal 

clustering of subsamples in case the populations are sufficiently distinct. 

A discriminant analysis can then be performed. 

Figure 2.  Scattergram of  f  Versus  f..  in Mixed Sample. 

- 15 - 
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3.2 Rotated (Orthogonal) Factor Analysis 

In the present section we consider the method of factor analysis, 

when the number of variables (21) is considerably larger than the number 

of variables (6) in the examples of the previous section.  The simulation 

is based on Program SN0R2, which simulates (raw) ORI scores and writes them 

directly into a data file "RSCORE" in the computer.  The sample means, 

standard deviations are written into a file "SMNS" and the intercorrelations 

are written into a computer file "MATRIX".  The files "RSCORE" and "SMNS" 

are then read into a program which computes the standardized variables 

z,   (i=l,...,21) .  These standardized values are written into a computer 

data file "ZSCORE".  The files "MATRIX" and "ZSCORE" can then be used to 

perform a rotated factor analysis by one of the computer programs which may 

be available in the computer library.  We have chosen to use the SPSS [7] 

factor analysis program.  The program has the option of reading the correla- 

tion matrix, rather than the whole data set.  We therefore merged the file 

"MATRIX" into the SPSS program.  The sample means and standard deviations 

of the sample of 21 variables simulated according to N(51,4R)  are given 

in Table 8.  The matrix R for the simulation is that of Table 1.  The 

sample correlation matrix is of size 21 x 21 and will not be given here. 

TABLE 8 

SAMPLE MEANS  AND   STANDARD DEVIATIONS  OF 
SIMULATED  SAMPLE OF 50 VECTORS  OF  21 ORI VARIABLES 

K)   4*897   4.752   4.391 
MEANS S.065   4.367   5,047   4.673   4*397   4.737   5.378 

4.666   4.932   4.468   4.941   4.697   5.0:1.2   6.060 
2.023   2.323   2.133   1.932   1.967   2.358   2.186 

ST.  DEVS.    2.099   1.752   2.218   1.723   1.794   2.120   2.386 
1.918 2.177 1.515 2.263 1.759 2.043 2,628 
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The first step in the SPSS program is to compute the eigenvalues and 

eigenvectors of the correlation matrix.  All the eigenvalues are given in 

Table 9. 

TABLE 9 

EIGENVALUES OF THE SAMPLE CORRELATION MATRIX 

AC1 Ui' 

3 
4 
5 
6 .., 

8 
9 

10 
;i. :i. 
12 
;l,3 
:l.4 
IS 
16 
17 
IB 
19 
20 

: BENVALUE 
4, 7.1.774 
:■*:,.!> 4 9 71-, 

.I.  V 

! OF VAR 

..77374 

.69166 

.60214 
«52346 
f 40730 

.25938 
* 23382 
«16924 
* 13962 
.11074 
.07412 

3.3 

.i. - a 
1,4 
.1. * A.. 

1 , 1 

4 

CUM per 

A/ ♦ U 

/Ba) 

0 

87 < 
90. 

9 
■i 

92. 3 
9 3 .■ 9 

95. "K 

96. 5 
97. 6 
98. '::.< 

99. 1 
99. 

1.00. 
6 

The eigenvectors of R are given in a matrix S of size p x m , called 

the factor (structure) matrix. The m column vectors of S are defined 

as 

= X1/2 h 
^(j) " 3  Mj) 

j = 1,...,m (3.2) 
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where b,.-,  is the eigenvector corresponding to X.   ,   X^   > .. > X    > 0 , 
^\3) J-L==m 

2 
the m largest eigenvalues of ^ .  Obviously   | A.,  | = ^A   •     Further- 

P        T 3 3 
more, if m = p then ^ - S %(■}$,(•)       ^s the spectral decomposition. 

m 
T      i Let &„ =    ^    ^-S^J   and ^m = ^ " ^  '  it is desirable to choose m so 

j-1 2   2 

P 

j: 

%*- ^wi and i = £ 
that ^m is negligible (or statistically non-significant).  Tests of the 

significance of R  are available (see Cooley and Lohnes [4,103]. 

According to the spectral decomposition, 

m 
hi = E Xibii '        i = 1"--'P     (3-3) 

3-1 J J 

is the part of the ith diagonal element of R  (the variance of z.) which 

is explained by S.  The parameter h.  is called the communality of the 

ith variable.  In Table 10 we present the factor (structure) matrix and the 

communalities. 

The factor-scores defined in (31) can be obtained as inner products 

of ^ with the column vectors of ^ = ^ /V  , where A is an m x m 

diagonal matrix with entries A.,...,A  .  When the number of variables is 
i     m 

lar~e^ it is generally difficult to interpret the factor-scores obtained 

by the matrix ^   (see Table 10).  For this reason various rotation 

techniques were developed, which transform the factor (structure) matrix 

^ to a matrix /^ " ^ » ? being an m x m (orthogonal) matrix so that 

the column vectors of A have as many zero entries as possible.  We con- 

sider here an orthogonal rotation matrix P  obtained by a method called 

varimax.  This method maximizes the variance of the coefficients of each 

column vector of ^ (see Van de Geer [9,150]).  In Table 11 we present 

the varimax rotation of the matrix S of Table 10, as obtained by the 

SPSS program. 

- 18 - 
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TABLE 10 

THE FACTOR  (STRUCTURE)  MATRIX    %    AND COMMUNALITIES 

CTOR     :l. FACTOR      2 FACTOR      : 
.63656 •-.38894 -.08892 
.40868 .48347 •-.46057 
.43219 ■ .09805 -.36006 
.39535 ■■••.138 77 .46957 
.55830 •-.22559 -,16417 
.55:1.46 ••■•. 5 8565 .30006 
.60517 •■■•.41661 ••.20766 
.45170 .54153 ■••.22955 
.43472 .52352 .41075 
.23966 .70879 -.11495 
.49398 <■ -r .-.•.. ^..t (.> .' .52152 
.43682 -.21725 -.I 6030 

-.30366 -.39032 
.54332 .20345 .07008 
.47193 -.06378 .37983 
.58146 .11887 •-.23283 
.39548 -.08428 -.40533 
.42930 •-.40516 .36584 
.09042 .47153 -.13407 
,39481 .19576 .47195 
.47903 .43095 .01722 

CQMHUNALITY 
01 
Y2 
03 
04 
05 
06 
07 
08 
09 
010 
Oil 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 

.56439 

.61289 

.32604 

.39606 

.38953 

.73713 

.58292 

.54998 
^ O 3 .1. / O 

^57303 
.69808 
.26386 
.58943 
.34150 
.37105 
.40643 
.32780 
.48229 
.24849 
♦41694 
.41549 
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TABLE 11 

VARIMAX ROTATED FACTOR MATRIX    A 

V2 

K>7 

'.}? 
V10 
v 11 
i ■ t ■■■■i 
V   .1. .■... 

I ; -i   ' 

r i ■! / 
v  .t.    . 

M 1  [\ 

v J. ■.. 
IJ -j 7 

',;'.; 
U1 v 
V20 

l-A>:TOl% 
;:" A r; f 01. 
FACrDI 

"ACl'DR  J. 
♦ 69:1.62 

♦54405 
♦12286 
♦59764 

i:r '■) ■■:■• -i ■ ■> 
♦ %.f.%;. O ^ / 

.73963 
♦20729 

••♦;l.:i.529 
-.0821? 
■•♦08288 

♦50192 
v76 6 46 

FACIUl 

.Of 

■:■ D ■..> -.f? V.-' 

;. 3:1.89 
♦ 0 /' /' 3 

♦ .1,; j ■•{,.;,' 

FACTOR      1 
♦ ; "TW^VO 

■•• j •?-j- / a .■ 

"■ ♦ 4 V i;  ; 6 

♦ AM 66 
.16496 
♦ 116 2 0 
♦ 0 4 0 61 
♦ •■■; .i. %:>.,'.; ,■.•.'. 

>10143 

I-AClUR     ; 

<■ K.: .■' s..' -? •..> 

AC 1 OR 
* 76 19 
j 1 29 95 

"■" « 0 i;;; -v 24 
V 6 06 IS 
* :l. 75 24 
* 5 40 90 
♦ •i 59 84 
<■ 0 86 28 
■; a 02 .'■..  ■' 

... 0 ■::■< ■) 37 
■> , r>9 

72 
18 

;L; I UK 
.56891 
.033:1.2 

Finally  the  factor-scores corresponding to the rotated  factor analysis 

are obtained by the inner product  of     z    with the column vectors of 

G + FP = S    A      P   .     These  factor score coefficients are given in 

Table 12. 
% 
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TABLE 12 

FACTOR SCORE COEFFICIENTS 
OF ROTATED FACTOR ANALYSIS 

T-385 

t- tV 7 01' 

1.1 ' 

v .1. ..I 

U.!. 4 
y 1 ::> 
111 <, 

'.'70 
V2.L 

• 

l" I'IV : UK 

< 08: 
tV^oq - .. ■./.- . :M, 

1  ''-if ■    L» 

.:I7:. ;.;;•' 
,1038 

:■ K 
. .. ii :' .i s 

H*' 

v 0 !.> 2 7 S 
., 17442 ^ 

.20 v.. s II  T". i '. "" - s 0.1. 0..:} 

.044:' . ... ;. .;.;./ '^ f - ! 02707 
<. ;i.02v 
,039w 
.1077 

) j 24c :'\ j 
>07778 

V 
,21454^ 

-,007:1.8 
.27733 • 

.137/. •- ■: 0,1,0 2 7 -.0.1.0 9 2 
. '.J ;! .:- 1 • , C 0:5 ■■:;; •■.07!. 13 
♦ 077.- 
,0037' .■) f .■'..• ■. 

.07442 
v2008 7»^* 

,1277 ".O:? ;• i ■■•.v'i77>' 
♦ 169'.^ 
> 0 4 2':.' 

, • ...   • Ci ■-..10 760 

, 021 '. , .i. 67! 7l.;i if ■■■.03504 
,0751 ..22748 V 
,0082 ■i » 1 '..) V ,'..; r ,06900 

The coefficients greater than .15 are marked in Table 12. This can help 

to provide proper interpretation to the factor-scores* Scattergrams of the 

factor-scores of the 50 simulated systems are given in Figures 3 and 4. 
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Figure 4.     Scattergram of     f       Versus     f 
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4.  Detecting Deterioration in Readiness. 
Discrimination and Classification 

We have seen in the previous section that the readiness of systems 

can be represented by principal factors or rotated factors.  This is a 

combined measurement of readiness, which transforms the basic ORI scores 

and reduces them to a small number of orthogonal factor scores.  This repre- 

sentation of the readiness of systems is particularly useful for control 

purposes.  Suppose that we wish to follow the state of readiness of a par- 

ticular system.  We can periodically make observations on the ORI variables 

and present the corresponding factor scores on the scattergrams given by 

Figures 3 and 4.  Significant deterioration in readiness will be detected 

by the location of these points in the scattergram.  Moreover, if a whole 

group of points cluster on the scattergram on the negative side of a factor 

there may be an indication that this group originates from a different 

population and further analysis (for example, discriminant analysis discussed 

later) should follow.  Such a case was demonstrated in Section 3 and illus- 

trated in Figure 2.  In Figure 5 and Figure 6 we illustrate the factor 

scores obtained by a rotated factor analysis of the 21 ORI variables, when 

the sample of 50 systems consisted of 25 units from the distribution 
N(5^,4^)  and 25 units from the distribution NQ.,4R) .  As in Figure 2, 

the points corresponding to the units in the second subsample are circled. 

It is seen again that most of the second subsample points are concentrated 

at the negative part of ^ .  There is a strong indication of a significant 

difference between the two subsamples.  The data consisting of the two sub- 

samples presented in Figures 5 and 6 were further subjected to discriminant 

analysis of the SPSS.  In Appendix III we outline the theory of discriminant 

analysis.  We present here the main ideas and results. 

T 
Consider products ^ v for vectors v in subsamples 1 and 2. 

Suppose that the observed vectors in subsample 1 follow the multivariate 

distribution N^^)  and those in subsample 2 are distributed like 

N^2'4^) •  The transformed variables w = l1^    have the normal distributions. 
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Figure 5.  Scattergram of Factor Scores, f„ Versus  f.. , 

in the Case of Two Subsamples. 
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Figure 6. Scattergram of Factor Scores, f  Versus f , 

In the Case of Two Subsamples. 
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T    T T    T 
N(^ ^-.y^l ]$)     and N(£ ^'^ R^ ' respectively.  The problem has thus 

been reduced to that of discriminating between two univariate samples from 

normal distributions.  The value of £  to choose is that which maximizes 

the F-statistic 

n n   (w -w ) 
F = —^ •   % Z (4.1) 

"l^    s2 n 

where n1  and n  are the sizes of the subsamples, w-i  and w  the 

corresponding sample means of the w variables, and s  the pooled estimate 

of the samples within variance of the w variables.  The SPSS program pro- 

vides the optimal vector ji    and the variables which significantly influence 

this discrimination (those for which the corresponding components of the 

optimal are significantly different from zero.) The procedure according to, 

which the variables are chosen to be included in the discriminant analysis 

is called a "Step-Wise Discriminant Analysis."  The reader is referred to 

Afifi and Azen [1] for a description of the procedure.  In addition, the 

SPSS program performs a classification procedure, which indicates whether or 

not each one of the vectors in the subsample belongs to the corresponding 

population (see [1]). 

The results of the SPSS discriminant analysis on our simulated data 

(25 vectors from N(5^.,4^) and 25 vectors from N(1,4R)) provide: 

(i)  The means of each variable, within the subsamples 
and total; 

(ii)  The standard deviations of each variable, within 
the subsamples and total; 

(iii)  The matrix of within samples intercorrelations 
(pooled estimates); 

(iv)  Optimal coefficients for significant variables; 

(v)  Centroids of subsamples, w  and w  , for the 
optimal weights; 

(vi)  Table of the classification results. 

We provide some of the results in Tables 13 through 18.  Table 15 presents 

the actual classification for every case in the data.  For each case we obtain 
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TABLE 13 

SUBSAMPLE MEANS AND STANDARD 
DEVIATIONS OF ORI VARIABLES 

SRDUP CDUMTS 
GROUP    1 GRDU?    3  TDTflL 

CD LINT £5.0 0 0 0 £5.00 0 0 5 0. 0 0 0 0 
MERHS; 

6RDUP    1 GROUP    3  TDTRL 
VI 4.7953 . 5543 c!. 675 0 
V£ 4,6733 1.7134 ■-■ 1953 
V3 4.4433 1.3334 c» 3336 
V4 5. 15 03 1.533 0 3. 3694 
V5 4.7933 .334 0 c ■ 3164 
V6 5.0103 . 3353 c ■ 6730 
V7 5.1356 . 4353 •-I 3104 
V8 4.1734 1.7976 .~ t 9350 
V9 3.3664 1.1093 L. ■ 4373 
VI 0 4.0593 1.3744 c ■ 9663 
VI1 3.9133 1.0673 c ■ 493 0 
V1.2 4.39 43 .£330 ^^ 3164 
V13 5.3773 .4373 ~% Q c; -? o 

V14 5.3636 1.3334 3 £930 
V15 4.4304 . 6916 £ 5360 
V16 4. 3 03 0 1.4356 c 3713 
V17 4.0333 . 7376 3333 
V13 5.3376 . 3344 c 361 0 
V19 4.3933 .336 0 c .6174 
V20 4.3773 . 9363 c .9330 
V21 4.5330 1.4633 ■~i . 0 0 04 
STflNDR RD DEVIflTIDNS 

GROUP    1 GROUP    3  TDTRL 
VI 3.3791 1.3318 o . 0156 
'JP C~ ■ 3933 3.3611 o . 7436 
V3 2. 1443 3.3133 2 .7013 
V4 c £333 1.9654 2 .7515 
V5 c 3353 1.7399 c .3733 
V6 c~ 5733 3.3347 ;-; .4035 
V7 c 5990 1.7333 3 .3 063 
V3 -1 3351 3.0563 3 . 44 06 
V9 3 0371 1.5795 C ,379 0 
VI 0 3153 1.3633 c . 3545 
VI1 1 9675 1.4937 c .3513 
V12 iH 3633 1.4143 Cm . 3497 
V13 o 3913 1.9373 ■~l . 3553 
V14 C- 5930 3.3591 3 .33 03 
V15 3 £549 1.6393 c .7477 
VI6 Cm 6133 1.7637 2 . 6447 
V17 1 7 0 03 1.4133 ■*• . £745 
V18 2 4 033 3.1113 3 . 357 0 
V19 1 6359 1.9947 --t .5491 
V20 3 , 5393 1.9335 --" . 996£ 
V21 c 5953 £.7£17 3 , 053 0 
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TABLE  14 

OPTIMAL DISCRIMINATION WEIGHTS AND  SUMMARY 
OF  CLASSIFICATION RESULTS:   TWO-SUBSAMPLES  DATA 

STHNDHRIUZEIi   DlSCRIMINftNT   FUNCTIQM   CDEFF1CIENTS 
FUNG  1 

V13 -.19723 
V15 -.13373 
V 1 l . i 'Oil 

VIS -.34179 
VI9 -.30399 
U N S T H N D fl R DIZE D D13 C RIMIN ANT F U M CTID N CDEFFIC TENT:: 

FUNC  1 
V13 
V15 
V17 
VI3 
V19 
CDNSTflMT 

-.06059 
-. 05049 
-.10410 
-.10131 
-.11936 
1.15571 

CENTRDIDS DF GROUPS IM REDUCED SPflCE 
FUNC 1 

GROUP 1 -.37363 
GROUP    3      .37363 

DISCRIMINRNT RNRLYSr 

NO. DF    PREDICTED GROUP MEMBERSHIP 
CASES    GP.    1   GP.    £ 

FILE   NONRMS 
PREDICTlOM RESULTS - 

RCTURL GROUP 

GROUP    1 £5. £3. £. 
9£. 0'i       3. O'i 

GROUP    £ £5. 0.        £5. 
. 0";    i o 0. 0": 

PERCENT QF 'GROUPED" CASES CORRECTLY CLASS IF I ED:  96. 00*^ 
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TABLE 15 

SPSS  CLASSIFICATION ANALYSIS OF TWO-SUBSAMPLES DATA 
DJSCRlMIMflNT  RNfiLYSIS 

CASE 

SUBFIL SEQNUM 

NDNfl 

mm 
mm 
NDMfl 

NDMfl 

NDNfl 

mm 

Mam 

mm 

mm 

NDMfl 

mm 

mm 

mm 

mm 

NDMfl 

NDMfl 

NDNfl 

mm 
NDNfl 

NDNfl 

NDNfl 

NDNfl 

NDNfl 

NDNfl 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

3. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

1*. 

17. 

18. 

19. 

£0. 

£1. 

MISSING ACTUflL 

VALUES GROUP 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 ♦♦♦♦ 

1 

£4, 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 ♦♦♦♦ 

HIGHEST PRDEflEILITY   2ND HIGHEST 

GROUP P (X^G) P (S/JO  GROUP P <@/K) 

.997 .993      £ 

.996 .992      2 

1. 0 0 0 1. 0 0 0 

.941 1.0 0 0 

1. 0 0 0 1. 0 0 0 

. 772 .755      2 

.999 1.000 

.7 09 .653      1 

1.000 .999      2 

.994 1.0 0 0 

.934 .933      2 

.631 1.000 

.912 

. 936 

1. 0 0 0 

1. 0 0 0 

1. 0 0 0 

. 996 

. 657 

. 996 

.94 0 

1. 0 0 0 

. 991 

1. 0 0 0 

.945 

. 997 

. 996 

. 999 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 !"l 0 

DISCR 

<6/X> FUNC . 
t-score 

.007 -.60 

. 0 03 -.53 

'-it-. 

-1.39 

-1.05 

£45 -. 13 

-1. 10 

34£ . 06 

0 01 -. 82 

-1.13 

017 -.49 

-1.74 

-1.45 

055 -. 35 

0 03 —   "7 n 

004 ~" • 'i' r 

0 01 -.39 

.16 

m   l    Z- 

. 1 £ 

. 11 

. 03 

UUi 

012 

_ TD _ 
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NQNfl 26. 0 

NDNfl 27. 0 

NDNfl CL~' • 0 

NnMR 23. 0 

mm 3 0. 0 

mm 31. 0 

mm •I* o 0 

HDNfl 33. 0 

NONfl 34. 0 

NnNfl 35. 0 

HDNfl '-li^i 0 

HDNfl 37. 0 

HDNfl 33. 0 

HDHfl 39. 0 

HDNfl 4 0. 0 

NDHfl 41. 0 

HDNfl 43. 0 

HDNfl 43. 0 

HDHfl 44. 0 

HDHfl 45. 0 

HDNfl 46. 0 

NDHfl 47. 0 

HDNfl 43. 0 

HDHfl 49. 0 

HDHfl 50. 0 

o 

£     1 

2     1 

9 9 6 

983 

0 0 0 

932 

0 0 0 

339 

0 0 0 

0 0 0 

962 

326 

997 

0 0 0 

0 0 0 

995 

931 .93 0 

0 0 0 . 00 0 

969 .971 

999 . 0 0 0 

346 . 353 

946 . 000 

941 0 0 0 

0 0 0 993 

334 396 

999 0 0 0 

0 0 0 0 0 0 

0 0 0 

0 0 0 

o n n 

0 0 0 

I.I II11 

0 0 0 

9&6 

0 0 0 

991 

1 . 001 

1 . 0 02 

1 . 0 09 

1 . 02 0 

. 029 

147 

1 . 0 02 

1 . 1 04 

1.16 

1. £6 

1. 0 0 

1.27 

. ?■':■ 

1.43 

1 . 002 

1 . 0 01 • r^'. 

1 . 034 .41 

1 . 172 . IS 

1. 15 

VI 

1.0 

m    C   . 

1.3: 

i. 3 : 

i. it. 

1 . u : 
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TABLE 16 

MEANS AND  STANDARD DEVIATIONS  IN THREE-SUBSAMPLES DATA 

D i. 
11 

BCfUA 

(.:! UN ( 
Hlr AN 5 

U 1 

iv1:- 

K>2 
1 1 {; 

1,1 

I 1 ■ 
V ■: 

^9 
VI 
t 1 '! i \   ,i, 
Vl 
v1 1 

1. 

'v'i. 
1! 1 );;■ 

UN ANT   ANALYSIS 
NUNAME 

:DUN Hi; 
GROUP 1 

20.0000 

V .1.7 
y i s 
U1 9 
020 
11 n i 

STANDAR 

02 
n ■ 

U 5 
06 
0 7 
o;.; 
09 
OK 
01: 
i.' i ■ 

Oh'O UP 1 
5 « 0310 
4 ... 4715 
4. 5505 
IS" 3840 
5, 14 95 
.j« 3990 

1260 
4,- 1415 
4, 0320 

1140 
4 ' y C'f l-;' f\ 

5. •7 ■'  l::-t:: 
/ .1, . .i >J 

4* 40-1 5 
4,. 52 45 
4, 4395 
4  :. ;; /30 
4, n/20 
4. 9720 

013 

5 
V 6 
017 
0: 3 
0: 7 

o; ' 0 
o: !1 

4,1960 
D   DEVIATIONS 

GROUP 1 
2.35 41 
2*5544 
2 ,. i 9 7 :> 

2»0090 
2.6593 
2.4060 
2,4964 
1,8132 
2.1418 
2 . 311 :l. 
:U96 06 
2.1020 
2.1026 

«£» o ** U »•: 

1.7879 
1.4 830 
1 .81:1.2 

GROUP    2 
'[■■'() A 0000 

GROUP 

3 - 7320 
3 :■ 3595 
3»12 :i. 5 
2.7830 

GRC 

3 : 
■' V   v 

.;.■. <■ 

2. 

4 705 
2315 
1905 
5620 
6695 
9 245 
1925 
7170 
B995 
7470 

3 . 0215 
2. 5500 

9315 
3. 1010 

M. IP 2 

:U 7500 
1  . 
1, 

8466 
8575 

2.0832 
1.6689 
2.3947 
1,8432 
1.9372 
1.3739 
1 ,3309 
2.0098 
2,1930 
1.5579 
1,7939 
1,3360 
2♦2807 
1,4623 
1,8880 
2.3748 

GROUP 
W ■. '. .' ',.' ''.  '', .' 

GROUP 

1 . O/i 

. 6bfJ0 

.6180 
»6240 
* 84 

-i". C! 

50 
2.0 

V 89 : 0 
■> 61 i. 0 
♦ 42 70 
♦ 27 ?0 
« 
84 

.-1  '..' 
50 

57 70 
4 07 
56 

;;0 
1.0 

♦ 78 iO 
* 43 30 

>60 

GROU 
1 .8069 
2 ,9439 
'.> <■ -;■ Oo / 

2.1671 
A

-
.. . A,. %J .. ■ r 

3.0695 
1.9315 
1 , 9111 
1.5271 
1.9083 
1,1845 
1,6635 
2,6209 
2.8563 
1,6571 
1,3197 
1.7604 
2,4704 
1,9360 
2,0608 
1 ► 9764 

TOl "(I... 
30. OC 00 

TOT •il... 
3. 20 84 
3, 58 28 
3. 41 34 
3 . 66 42 
3. 30 46 
3, ';> ■:;: 

-:: ■■"'■ 

3. 
.:> .- 
3 . 

41 
04 t B 

50 
30 

0 .:i 

^C1, .'■•. 

3,7114 

3,2850 
2,8598 
3,4700 
3.1264 
3.2474 
3,0720 

TOT At 
2.6126 
2,5 797 
■? A 4 0 R :■> 

3, 0280 
'•>       / i^* -I   "r *■:. , ;::• u .1. o 

^.. .■*...». .i. -i 

2,4355 
2.1150 

2.7:1.09 
2.1825 
2.2303 
2,2981 
2.3706 
2.2989 
2.4877 
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TABLE 17 

SUMMARY OF DISCRIMINANT ANALYSIS 
STATISTICS THREE-SUBSAMPLES DATA 

S T A F^D A R D17. E D   D C S C\< 1HIN AN 1   F UH C1 1U N   C GE i- i::' i: CIE f! T S 

V8 
V9 
yi 0 
V:l. '!> 

v:i. 3 
y i. 4 

.■ 

11 ■ 

8 

FUNG  1 1 I i ' C  2 
,18^05 -♦:l'147V 

-♦12608 -■♦5992S 
-.14394 ••■•,78^5;:;i 

•-,24636 -♦17434 
-♦04710 >82144 
-♦13662 ♦l^OOS 
-♦41260 -♦35933 
-♦17682 ♦27193 
-♦26187 v53829 

/ Q •..) 'V.1 

UNSTANDA!:;;DIZED   DISCR1MINAM r   FUNCT10N   CO:;; i;'FICIEH 
FUNC      1 FUNG     2 

V'>                                       ,08323 -♦0^.54/ 
'v'9                                      ••♦05596 
'.,'10                                 ••♦05910 
Ml 2                                 •■■•♦lllOO 
013                                 ■••♦01704 ,29712 
0:1 4                                 •••■♦ 05040 . 0o2 v3 
017 ■••■♦17954 -♦15628 

018 •■••♦07459 ♦11471 
019 •■•■♦11391 ♦234:1.5 
CONSTANT :!.♦ 78926 ♦36658 
8ENIRQIDS OF GROUPS IN REDUGED SPACE 

FUNC  1 FUNG  2 
GROUP    1     ••■♦88931 ♦ 40053 
GROUP    2      ♦13352 ■■■•,69790 
GROUP    3     I♦51157 ♦59464 

DIS C RIMIN AN T AN A i... Y 31B 
PIPE   NOMAHE 
plM;-DIG!TOM RESULTS •- 

N 0 > 0 i:    P R !:■ DIG T E D 8 R G U P G;:: H & E >'■■: B HI i' 
ACTUAL GROUP GASES    GF* 1   GP>    2   OP♦ 

GROUP    1 20 ♦ 19 ♦ 1. ()♦ 19 ♦ 
95 .0% 

I 
.1. <• 

5 ♦ 0% 
0* 

♦ 0% 

o 

O 7. 

GROUP    2               20,           !♦        19. 0. 
95,0% ,0% 

HRQUP   ;.:             ,:■■■■■         o.                      1, 9, 
10, OX 90*0% 

F R C E N T 0 F ' 0 F^ 0 U P E D ' G A S E S G 0 R R E G 11... Y G1... A S SIFIE D J  94, 0 0 % 
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TABLE 18 

CLASSIFICATION ANALYSIS  OF THREE-SUBSAMFLES  DATA 

Ht 

l-'raiil b\< 

12 
■I "X 

;l. /:■ 

:l. 9 ■ 

21. 

7 3 
'•' 4 

26, 
27 
2 *'! 
29. 
30. 

33:. 

35. 
3A . 
3?   .: 
38. 
"r o ^./ .' * 
4 0 ... 
4 :l,, 
42* 
43, 
44. 
45 > 
46, 
4 7 , 
48, 
't9, 
50, 

UAL, 

GUI" 

:l 
:l. 
l 
l 

HI, GHi.S i    F'ROI- 
GRilUr    PCX/G) 

AB;I:I„.:I: FY 

/ 3 5 

2Nn 
R0U1 

i-iMi:: !.:• 

' 5'' '::- 

2 
'2 

■:> 
A.. 

") 
A.. 

') 
A.. 

;> A.. 

2 
2 
'■> 
A.. 

2 
2 
':> 
A.. 

'■> 
A.. 

2 
2 
'■) 
A- 

2 
';> 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

**** 

i. A ooo 
> 999 

9 .•1; 

O 1 i 

>!< * >[•' * 

I. 
i. 
I. 

.999 
,948     :i 
,962     :i 

J. O •") 

.000 

. 0 0 0 
!. 
I. 

:uooo 
:i., ooo 

.891 
,949 

I. <■ 9 9 7 O ! O 

1. 1 ,000 c   ■'■ \: .:.' 

I. 
1 

.699 
«534 

.901 
,998 

1 
2 

.998 
1.000 

.99 6 

. 9 5 7 
:l. .ooo 

.996 
. 8 7 3 
. .:M ', ■; 

2 1,000 .965 
2 :l. .000 ♦ <:.• 'Y . 

■;;) 1.000 .98 4 
9 1.000 .972 
';> .969 .989 
2 .992 ,966 
'3 .995 ,832 
'"> . 940 . V .\ ■■■ 

'!) 1 .000 .956 
'!> 1 .000 .919 
'P 1 ,000 ,94 7 
'*!' 1.000 .754 
9 ,997 ,967 
'!> 1.000 .981 
O .998 ,634 
':> .990 ,961 
;i. .999 ,693 
3 .1.000 L.000 
3 ,997 ,992 
3 1.000 1. ,000 
3 .987 1,000 
3 ,976 1. ,000 
3 .999 1. .000 
3 .993 ,993 
3 .984 .621 
3 1,000 .994 
2 .573 ,559 

2         .002 
2         .002 

9         .05? 
A                        0 ,:. 

.109 

.05:i 

. 1B 1. 

.037 
,. ti'99 
. 0 0 ' 
. 0 0 4 
.03.!. 

.018 

.143 
, 0 :i. 3 
.026 
, o i :i. 
.033 
.146 
.087 
,038 
.055 
.053 

■'"! A I 
*    A',. *t   V..' 

,032 
,013 
, 366 
,039 
,307 

, 008 

,005 
,378 
,006 
.441 

SCRIMT. ^'Hi T   8 COR 1:7 
it   1 FUN8   2 
-634 •-.283 
610 1.764 

- 11 9 
1 .399 
1.632 

. 3 8 6 
>196 

,599 
,763 

> / i :■■ 

. 6 :i. 2 

,466 
■-,003 
-. i :i. 3 

.123 -•.331 
,605 - ,352 
.70 4 .800 
,629 
.620 

,930 
.441   . 

AA-X^ v p'.!■■) 

.367 

. 109 
,304 
,('5e 

,027 
,245 

•,031 
•, 181 
.334 
,070 
,231 
.124 

-.076 
,676 
,488 
,876 
,177 
,    A'„ \J '.J 

■•.040 
■, 300 
,632 

-.436 
1 ,842 
1.148 
1.871 
1 .485 
2,175 
2,012 
1 ,176 

,893 
1,244 
1,269 

•-, 4 1 0 
•. 322 
,186 

-.509 
,087 

1. ,046 
-.908 
2,055 

1. ,348 
,178 

1 .500 
•••,496 

,001 
•■■•,943 
- ,618 

•1 .216 
 902 
•-,618 
1,707 

,188 
,787 

1,377 
.527 

1 .839 
-,043 

.430 
1,559 
■-,031 
1,233 

•1.731 
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the likelihood of the observation, given the group P^JG]  and the Bayes 

posterior probability of the group, given £ .  We see in Table 15 two cases 

in group 1 that behave like the cases of group 2. 

The discriminant analysis becomes more complicated, but at the same 

time more interesting, when the number of subsamples (groups) is greater 

than two.  Generally, if the number of subsamples is k , the analysis is        ^ 

done by computing k-1  discriminant functions, which maximize F-statistics 

that can be obtained by k-1 orthogonal vectors l2'    (i=l,...,k-l) . 

The results are then plotted on a 2-dimensional graph, with orthogonal axes 

representing the first two discriminant functions.  We illustrate this in the 

following example, analyzed by the SPSS program, on three subsamples of sizes 

n . 20  n = 20  and n = 10 .  The cases in these subsamples were simulated 
.L A 

according to the multinormal distributions N(5^,4^) , N(2^,4R)  and NQ.,^) , 

respectively.  The scattergram in Figure 7 shows that one can well discriminate 

between these subsamples by means of this analysis.  We also learn from the 

analysis that only variables Vg, vg, v^, v^, v^, v^, v^, v^ and vig 

contribute significantly to the discrimination. 
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Figure 7.  Scattergram of Discriminant Scores. 
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APPENDIX I 

SIMULATING MULTIVARIATE NORMAL VECTORS 

The simulation of p-dimensional multivariate normal vectors is based 

on the following well-known result (see T. W. Anderson [2]), 

Let ^ = [x ,...,x ]T be distributed like N(^,^) .  Suppose that 

^ = [x^...^  and ^2) 

the partition 

[x   ,...,x ]  , for  1 < r < p .  Consider 

and 

k c(2) 

1 = 
111 tl 12 

I        t K.21  1^22 

where £ (1) 
(2) is rxl-dimensional, £    is (p-r)xl-dimensional) ^   is 

11 
rxr and /   is (p-r)x(p-r) .  Then, the conditional distribution of 

x^ , given x^  , is the multivariate normal N(=2 j^.^22 1^ ' where 

c _ .(2) . y y-1(x(1)- r(1) 
^2.1   "^2    + hdu^       * 

(A.1.1) 

-1 
^22.1  ^22  ^21^11^12 

Let D be a diagonal matrix consisting of the diagonal elements of ^ 

i.e., D = diag(a  ,..., 

t    by the relationship 

i.e., D = diag(a  ,...,a  ) .  The correlation matrix R is obtained from 
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i - i11« «J1/2 
(A.1.2) 

Thus, if ^ is a p-dimenslonal standard multivarlate normal vector, i.e., 

^ ^ N(^,^) , then 

^ = 4 + ^  ^i (A.1.3) 

We consider now the problem of simulating ^ .  Suppose we have a procedure 

for simulating independent standard normal random variables,  z ,z ,... ; 

zi % N(0,1) , i = 1,2,...  we set  ^ - 2, The conditional distribution of 

u2 , given i^ is N(p12u1, 1-P12) , where p12 is the correlation between 

ul and u2 "  Accordingiy. given u1 , we obtain u  by the formula 

u„ = p 
12 

u, + ll-oA1'2 

^{ 12) (A.1.4) 

Suppose we have already simulated the values of u ,u ,...,u  (k=l,2,...,p-l) 

Let ^    designate this vector.  The conditional distribution of u 

(k) k+1 ' 
given ^    is obtained according to (A.1.1) in the following manner.  Let 

^k be the correlation matrix of ^(k) .  Consider the partition 

I 
(k+1) 

,(k) 

M   i p(k) 

p(k)T i 1 
(A.1.5) 

where p    is the vector of correlations between uk+1 and the components 

(k) (k) of ^^  .  Hence, the conditional distribution of u, _   given u^' 
k+1 Ki 

normal with conditional expectation 

(k)NT/T,(k),-l (k) n   = E-fu   lu I - rn^^CT?^^1 ( 
(A.1.6) 

and conditional variance 
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5      '    (P<k>)Ta<k>)-1(P(k) 

^     ^      ^ Vi= 1 - (p;') ^") (p;;) (A.I.7) 

Finally,  ut,i  I
s determined by the formula 

"k+l = \+l + Vl * Zk+1 '  k = 1»2"-"P-1 (A-l-8) 

An alternative approach for simulating the vector u is as follows: 

T 
Let C be a non-singular matrix such that R = CC  .  Simulate p i.i.d. 

T N(0,1)  random variables z.,...,z  .  Let z = [z.,..«,z i  .  Then 
1     p       'V'    l     p 

^=C^ (A.1.9) 

has the standard multivariate normal distribution N(P,R) .  The matrix 

1/2 
C = RA   , where ^ is a matrix whose columns are the p eigenvectors 

R and A is a diagonal matrix of the eigenvalues of R . 
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APPENDIX II 

PRINCIPAL AND ROTATED FACTOR ANALYSIS 

Let ^ ^ N(^>^) be a standard multivariate normal vector.  The 

distribution of ^ JJ is like that of  N(0,|,TS^) .  Let  ^j^ > ^2 > • • • > ^  > Q 

be the eigenvalues of ^. .  We wish to determine a vector (functional)  £ , 

with length  |A|| =1 , which maximizes the variance of &Tu .  The 

Lagrangian is 

f^'X) " fU -  ^V) (A-2.1) 

Differentiating f(^,A) with respect to £ yields the eigenstructure equation 

m0 = \l0 CA.2.2) 

Notice that 

I' ^ = XU = A 

Thus, I is an eigenvector of ^ , of unit length, corresponding 

to the largest eigenvalue of j| , namely to' A  which is the variance of 

Similarly, let ^  \...,£(p)  be the eigenvectors of unit length 

of ^ , corresponding to A ,...,A  .  Notice that the variance of 

(i) T (^  )  ^    is A. (i=l,...,p)  and that 

cov(^(i)\4(j)\) = 0 ,  all i ^ j . 

(i) (i)T 
Indeed, if ^ = A^  ^    , i = l,...,p , then the spectral 

(A.2.2) 

decomposition of R is 

a- 
(A.2.3) 
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Furthermore, for any  i ^ j 

,„(i)T   n(j)T . _ 5(i)T  (j) 

(A.2.4) 

= I    l(±)\l{i)   = 0 
k=l 

Let B = (l^,. . . ,1^)    be an orthogonal matrix with columns which 

are the eigenvectors of | .  The distribution of 

«- t'W   ■ (A-2-5) 

is like that of  N(^,^ ; where ^= diag (A^ . . . ,Xp) .  Indeed, 

^Tu % N(p,^T^) .  But j^1^ = /V .  The components of ^ are called the 

principal factor scores, corresponding to u .  The orthogonal transformation 

of  u  given by (A.2.5) yields independent standard normal random variables. 

P 
Since  trace ^ = trace /\ = Z     ^ = p , the ratio XJ?   (i-l,...,p) 

1=1 

is the proportion of the total variance of ja accounted for by 

f. (i=l,...,p) •  If we choose only the first m (l<m<p)  eigenvectors of 

R , corresponding to  X1 >...> ^m  ,   and define B^ = [^   , ■ • ■ ,^       1 » 

/^ = diag(X1,...,Xm) , the transformation ^2^(m) JJ yields the first 

m components of  f .  The concepts of communality and the nature of rotated 

factor analysis was explained in Section 3. 
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APPENDIX III 

DISCRIMINANT ANALYSIS 

Suppose there are k groups (from different populations).  We assume 

that these groups constitute random samples (of systems) of size 

k 
n. (i=l,...,k) .  Let N = En. be the total number of observations.  Each 

i=l :L 

observation is represented by a p-dimensional random vector, x , having a 

Itivariate normal distribution like N(u.,2) , 

We define the following sample statistics. 

The within groups sample covariance matrices 

mu 

where 

i(i) = [a^^jj'-l,...,?] ,  i = l,...,k 

W   --HT L1 (x^-xfi))(x^-x^) 

(A.3.1) 

(A.3.2) 

is the sample covariance between x.  and x.,  within the ith group 

(i-l,...,k;j,j,-l,...,p); and x X  (i=l,...,k;j=l,...,p)  is the ith group 

mean of the jth variable.  The pooled within covariance matrix is 

k 

^    ^ = N=k ^/V^ f 
(i) 

\ 

e\ 

(A.3.3) 

Similarly, we define the between sampled covariance matrix 

^ = [bjj,;J'Jl=1'---'P] ' where 

k 

JJ   k"1 i=l i J   3       3 3 
(A.3.4) 

with x, = - E n, x.   , as the grand mean of the jth variable j = l,...,p N 
i=l i j 
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If L = ^ , an F-test of the significance of differences between 

the centroids of the k groups is 

= g jg (A.3.5) 

We determine ^ to maximize F^ . Notice that W is non-singular with 

probability one and the rank of ^ is k-1 . Differentiating F^ with 

respect to ^ yields the gradient 

^-[(^)^-(r^] (A-3-6) 
Thus, the vector ^ which maximizes F^ should satisfy the equation 

B£ = F„W£ (A.3.7) 

-1 or by multiplying (A.3.7) by jf1 we obtain the eigenstructure 

0(j"V^ =F^ (A"3"8) 

where jf1^    is positive semi-definite, of rank k-1 . 

^et  A > A >•••> ^   > 0 be the ordered positive eigenvalues 

of W_iB .  Let ^(i) , i = l,...,k-l be the corresponding eigenvectors 

(of length 1).  The functions 

d±-^\, i = l,...,k-l      (A.3.9) 

are the discriminant scores corresponding to the vector x .  The eigenvalue 

A1  is the maximal F  statistic, X,,  is the second largest, etc.  In 

Section 4, the discriminant vectors (functions)  ^ ^  as well as the 

discriminant scores are presented.  In the case of k > 3  it is customary 
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to present the points  (cL ,d )  of each case graphically, on orthogonal 

systems of axes.  Note that although A    is orthogonal to l , 

i,i' = l,...,k-l , the random variables d.  are not necessarily 

uncorrelated. 
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APPENDIX IV 

COMPUTER PROGRAMS 

In the present appendix we provide two computer programs:  (i) Program 

SIMU and (ii) Program SN0R2. 

Program SIMU, in FORTRAN, provides a complete package of simulating 

6-variable multinormal random vectors, according to given distribution means, 

standard deviations, and correlation matrix.  The simulated random vectors 

are then subjected to principal factor analysis.  The program computes and 

prints the simulated sample means, standard deviations, and correlation 

matrix; it applies a library subroutine program to determine the eigenvalues 

and unit length eigenvectors and prints these statistics.  After this the 

program computes the principal factor scores and applies a two-dimensional 

graphics subroutine to present the scattergram of  f2 versus f^   . 

Program SN0R2 was designed to simulate 21-variable multinormal vectors 

and prepare the result for use in subsequent SPSS analysis by batch process. 

The computations of all subprograms were performed on a Honeywell GE-430 

time-sharing computer.  The results were merged in a proper manner and copied 

into a tape from which the batch was then read into a UNIVAC 1108 computer 

for the SPSS analysis.  In the following we provide specific explanation of 

thu L-WO programs and copies of the programs. 

4.1  PROGRAM SIMU 

Block Lines 

1 100-130 

Designation 

Specific merging of library subroutine 
functions for 

(i)  Solving linear equations:  LINEQ 
(ii)  Finding eigenvalues and eigenvectors 

of a symmetric matrix:  EIG1 
(iii)-(iv)  Simulating standard normal variates: 

XNORM, RANDX. 

140-230 Dimension statements and definition of constants. 
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Block Lines 

250-320 

330-390 

400-870 

880-9 70 

980-1080 

1090-1200 

1210 

10 1220-1310 

11 1320-1440 

12 1450-1600 

13 1610 

Designation 

Reading means, standard-deviations and 
correlations parameters from a data file 
"CORR". 

Setting initial zero values for sums, sum 
of squares, and sum of products of simulated 
variables. 

Recursive simulation of 50 6-dimensional 
multinormal vectors and computing their sums, 
sum of squares, and sum of products. 

Computing sample means, sample standard 
deviations, and sample correlations of the 
simulated vectors. 

Printing the sample means, standard-deviations, 
and correlation matrix. 

Preparation for computation of eigenvalues and 
eigenvectors of sample correlation matrix. 

Computation of eigenvalues and eigenvectors 
of sample correlation matrix. 

Printing of eigenvalues and eigenvectors. 

Ordering the eigenvectors corresponding to the 
M largest eigenvalues. 

Computing and printing the M factor scores. 

14 1640-end 

Graphing the 2-dimensional scattergram of 
f„  versus  f  . 

Subroutine Program PLT1(N,',-) 

4.2  PROGRAM SN0R2 

Block Lines 

100-130 

Designation 

Merging library subroutine programs for 
(i)  Solving linear equations:  LINEQ 

(li)-(iii)  Simulating standard normal deviates: 
XNORM, RANDX. 
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Block Lines 

140-240 

Designation 

Dimension statements and definition of 
constants. 

250-320 

330-390 

Reading means, standard-deviations and correla- 
tions of 21 variables, from data file "CORR". 

Setting initial zero values for sums, sum of 
squares, and sum of products. 

392-875 

880-1085 

Recursive simulations of 21-dimensional 
multinomial vectors and writing the results 
directly into computer file "RSC0RE". 

Computing the sample means, standard deviations 
and intercorrelations of the 21 variables and 
writing the results into files "SMNS" and "MATRIX". 

1090 END. 
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PROGRAM  SIMU 

IMU 1' ::HI :flT   iri.-14.''-73 

1 0 0 
110 
120 
130 
140 
150 
160 
170 
180 
133 
190 
£ 0 0 
210 
32 0 
23 0 
2 4 0 
: 5 o 
26 0 
27 0 
230 
29 0 
3 0 0 
31 0 
nso 
33 0 
140 
150 

36 0 
370 
33 0 
33 0 
4 0 0 
45 0 
46 0 
47 0 
4 3 0 
49 0 
5 0 0 
5 1 0 
520 
530 
540 
55 0 
56 0 
57 0 

iiLIB»LIMEQj * r ♦-♦+- 
JLIBi-EIGl » .* > ♦■♦♦ 
JLIB ir XHQRM ?»»♦•♦♦ 
SLIB.-RflriDX* .» ,*■** 

DIMENSION 
DIMENSION 
DIMENSION 

-10 

11 u 

:I lv6!'' rR '■!6 ♦ 6') » RV '.>zO .» SD '■.&'■' .» 
:■ '■My y P <6 J 6> t EM (.&"> f ESI) <6> 
J <5 0 J 6> » EG (6 f 6> ? TEMP 1 ■'6> 

DIMENSION  EL<4) f IT<4) >Y<50t3) 
DIMENSI ON   HM (5 0? s. F1 <5 0) J F2 <5 0> 
HI MEMS I DM   E6G<S!»3> 
K - 6 
M=3 
KK=K-1 
N=50 
RN=N 
!J=:KNDRM<-1.) 
CALL   npEMF-rii- "CDRR") 
REfiDClii i:>    <FlV<D > 1 = 1 JK> 
FaRMftT<6F3.2) 
RERD •:: 1. 1 >    <SD a> J 1 = 1 > K> 
DD   3   I=1,K 
READ •: 1 - 2>    <R < I t J> tJ=lf K> 
F0RMftT<6F3.£> 
CONTINUE 
DO  25   1=1JK 

T < I > = 0. 
E .11 •:;!:■ -0. 
DO  30   J=lJK 

P<I J J> =0. 
CONTINUE 
CONTINUE 
DO  5   1=1,N 
U=XNORM<0.> 
z <: i > =u 
X •■ 1 > =flV < 1 > +SD >-. 1 > ►Z Q> 
w<l, i::•=:■:; a::■ 
T<1)=T<1) *-x<i> 
ESD < 1) =ESD ■; 1 > +-X <: 1 > ♦X >■. 1) 
U=XNORM<0.> 
Z <2> =R < 1 j- 2> ♦■Z < 1 > +U *-SQRT < 1. -R a J 2> ♦R a 
X <2> =flV <:2> +311 <2;" t-Z C2> 
W<I»S>=X<2> 
T <2> =T (2> +-X <2> 
ESD f.2> =ESD <2> +X <2> ••X ■:;2> 
DO   6   J=3TK 

Z<6> JC'::5J5> JE ;:5>,E';5> 
♦ ER 0=. .»6> 
»TEMP2<6> JT'::6:: JEHCEO 
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♦530 JJ=J-1 
59 0 no   ?     L1=1JJJ 

6 00 IiO   3   L£=lrJJ 
610 C<Lli.L(£>=R<;Ll»L£^ 
63 0 3   CONTINUE 
63 0 7  CONTINUE 
64 0 DD   9   L1=1»JJ 
65 0 B<Ll>=R<LlyJ> 
660 E<L1>=B<LD 
67 0 9  CONTINUE 
63 0 CALL   LIHEQO::JBJ JJJ 1JKK> 

63 0 R3Q=0. 
7 00 H-O. 
710 DD   10   L1=1»JJ 
73 0 H=H+B<Li>*Z<Li'> 
730 RSQ=RSQ+B<L1>*E<L1> 
74 0 10  CONTINUE 
75 0 U='XNORM<0.> 
760 Z (. J> =H+U*SQRT < 1. -RSQ) 

■   77 0 X <J> =fl'^•, CJ> +SD CJ> ♦Z CJ> 
73i"' UKIJJ>=X<J) 

790 T<J>-TCJ>+'X<J> 
3 0 0 ESD '■: J> =ESD CJ •' +X CJ> >X CJ> 
310 6   CONTINUE 
33 0 DD   66   L=1>K 
33 0 DO   67   J=1>K 
34 0 P <L J X' -P <L f J> +X (.L'> *-X CJ> 
35 0 67   CONTINUE 
36 0 66   CONTINUE 
37 0 5   CONTINUE 
33 0 HD   7 0   1 = 1 JK 

39 0 EM(I>=Ta>^RN 
9 o o v i = <flN*ESD a :> -T a > ♦■T a > > ■■•• cftH* CRN-I . > > 
910 ESD<1>=SQRT<VI> 
930 DO   71   .J=1»I 
93 0 QIJ= <flN*P < I r J> -T <I> ♦T CJ> > / <flN* <flN-1. > > 
940 ER <I» J) =Q IJ-' (ESD a> ♦ESD CJ> > 
950 ERCJir I>=ER<If J) 
96 0 71 CONTINUE 
970 7 0 CONTINUE 
93 0 PRINT 3 0?- 
990 3 0 FORMAT(SXr"SAMPLE MEANS AND STAND.DEV."y^^) 
1 0 0 0 PR I NT 35 f <EM < I :;• r I = 1 r K> 
1010 PRINT   85f<ESD<I>rI=sl»K> 
1 03 0 35   FORMAT C.5X r 6F1 0. 3> 
1030 PRINT   9Or 
104 0 9 0 FORMAT (-"VrSX* "CORRELATIONS MATRIX"*//) 
1050 DO 91 1=1TK 
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1 OS 0 PR IMT   92 f <ER >' I > J> » J=l»K> 
10 70 92   FDRMflT<5X? 6F1U.6> 
103 0 91   CONTINUE 
109 0 DD   93   1=1fK 
1100 DD   94   J=IJK 

1110 IFa-l>   95 J 95»96 
113 0 95   IJ=J 
1130 GO   TD   99 
1140 96   IF a-2;'   97 ? 97 > 93 
115 0 97   IJ=5+J 
1160 SD   TO   99 
1170 93   IJ=<I-l)*K-I*><I-l>/2+J 
113 0 99   EHaJ>=ERai. J;:' 
119 0 94   CONTINUE 
1300 93   CONTINUE 
1310 CRLL   EIG1<EHtEG ?K ? 3.0E-12»TEMP 11TEMP 
133 0 PRINT   10 IN 
1330 100 FDRMflT C-'-'J SXT " EIGENVALUES DF CDRREL. 
134 0 PRIMT 110» <EH<J>»J=l!'K) 
135 0 110 FDRMflT (5Xf6F10,6) 
136 0 PRIMT 13 0.' 
137 0 130   FDRMflT C'-.-'J"E IGEMVECTDRS";..-•■■••••> 
133 0 I'D   13 0   1 = 1 nK 
1390 PRIMT   140j <EG<I»J> JJ=1>K) 
1 3 0 0 14 0   FDR M fl T < 5 X.' 6 F 1 0. 6 > 
1310 130 CONTINUE 
133 0 EL < 1 > =EH a ::■ 
133 0 IT<1>=1 
1340 I'D   16 0   L^IJM 

135 0 LiO   150   1 = 1 rK 
136 0 IF<EL(L>-EHa>>    145Tl45irl5n 
137 0 145   EL<L>=EH<D 
133 0 IT<L>=I 
139 0 150   CONTINUE 
14 00 LTI = IT<L) 
14 05 DD   165   J=1»K 
14 07 EGG <J f L) =EG '■ J J LTI > • 
14 03 165   CONTINUE 
1410 EH'-LTI>=0. 
143 0 IT<L+1>=1 
143 0 EL<L+l>=EHa> 
144 0 160   CONTINUE 
145 0 PRIMT   cLOOf 
1460 300   FDRMflT <■■■■■-> 5X* "FACTOR   SCORES" J ■■'■■■••> 
147 0 DD   170   1=1TM 

143 0 flM<I>=I 
149 0 DD   175   L=lrM 
15 00 Y<I»L>=0- 

2»1»K> 

MflTRi: 
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15 1 0 
152111 
153 0 
1540 
1350 
156 0 
15? 0 
153 0 
159 0 
16 0 0 
161 0 
1630 
164 0 
165 0 
166 0 
167 0 
163 0 
1690 
17 0 0 
1710 
173 0 
1?30 
174 0 
1750 
176 0 
177 0 
173 0 
179 0 
13 0 0 
1310 
133 0 
133 0 
134 0 
135 0 
136 0 
137 0 
133 0 
139 0 
19 0 0 
1910 
192 0 
193 0 
194 0 
195 0 
196 0 
197 0 

13 0 

175 

:10  F 

170 

DO   130   J=1JK 
Y •;I ? L) =Y ■;:I J L;1 HEGG < J> L> *• <»\ iI» J) -EM CJ> > ••■ESD CJ.:• 
cam i HUE 
Y CI > L) =Y a » L> ^SQRT CEL <.L'> > 
CDNTIMUE 
PRINT   210rl!> <Y<IJL>»L=1»M> 

•□RMflT<5X» I4r3F10.4> 
F1<I>=Y<I>1) 
F2<I>=Y<I>2) 
CDNTIMUE 
CflEL PLT1 a^FlJF3:> 
END 
SUBROUTINE  PLT1<N»XJY> 
DIMENSION   A<.1> ^Ya> 
CALL   PSET <XMIN»XMflX»YMINirYMFIX> 
CALL   SPLT1 CNjX»YjXMINjXMflXi»YMIN>YMflX> 
RETURN 
END 
SUBROUTINE PSET CXMINtXNflX,YMIN>YMflX> 
XMIN=2, 
XMflX=l. 
YMIN=2. 
YMRX=1. 
RETURN 
END 
SUBROUTINE   SPLT1CN>X»YrXMINyXMflX?YMINfYMflX> 
DIMENSION  X<1> »Y<1> rXSCLC61> fYSGL<21> f ILINE<6 1> 
IF<XMIN-XMftX>   Zt3r3 
CRLL   HMflX<NrXrXMIN»XMflX) 
IF < YM I M-YMflX>   7 ■- 6 y 6 
CRLL RMflX<NrY rYMINrYMftX) 
CALL PSCL < 1 J XMIN» SCflLX.» YMftX;- R f XSCL.' YSCL!»YM IN.»XMftX> 
CALL G2RO<0»ILINE> 
DO 13 [<=1»21 
CALL GZRO<KrILINE) 
CALL SKPT<NrK>XfY»YSCL»XMINrSCflLX»ILINEJ1»R> 
CALL TYPIT<KrYSCLrILINE> 
CONTINUE 
CALL GZRQ(0TILINE> 
CALL PSCL OrXMINrSCflLXrYMAXTR♦XSCL> YSCL.YMINrXMftX> 
RETURN 
END 
SUBROUTINE   ANAX <N rX»XMIN rXMftX> 
DIMENSION   Xa> 
XMIN=Xa> 
XMFIX*X<1) 
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198 0 
199 0 
£ 0 0 0 
£ 01 0 1 
£020 
£03 0 
£040 
£05 0 
£060 
£ 07 0 .J 

£ 03 0 
£09 0 
£ 1 0 0 
2 11 0 
£120 
£ 1 3 0 
£ 14 0 11 
£150 10 
216 0 
£ 17 0 13 
£ 13 0 
£19 0 A 
££0 0 5 0 
££10 
£££0 
££3 0 
££4 0 
££5 0 
££6 0 
227 0 
228 0 1 
2290 £ 
23 0 0 
231 0 3 
232 0 
233 0 3 
234 0 6 
235 0 
236 0 11 
£37 0 5 
£38 0 
£390 
£4 0 0 
£410 
242 0 
243 0 
244 0 2 
245 0 4 
246 0 

.yYMINjXMftX) 

DO   1   J=2»N 
IF C< ■:; J> . LT. XMI hD   XMI N=X CO 
IF ('A < J> .ST. XMfl'A>   XMfl>'.=y. < J':• 
CDNTINUE 
RETURN 
END 
SUBRDUTINE   PSCL<J,XMIM,SCflLXJ YMRX» P» XSCL»' 
DIMENSIDM   XSCL<61> !rYSCL<£15 
GP   TD   <5.t6> ».J 
SCflLX= (XMFIX-XMIN^ •■■•■6 0. 
SCflLY= (YMflX-YMIN) ■•■2 0. 
R=. 5 ♦•SCALY 
Dn   10   1=1»61 
RI = I -1 
XSCL<D=XMIN+flI^SCflLX 
IF CI-21 >    11»11»10 
YSCL (I> =YMIN+ <20.-flI>♦SCALY 
CONTINUE 
PRINT 13, 
FORMAT <>//> 
RETURN 
PRINT 50y <XSCL <.!) *l = li61f 1 CO 
FORMAT CF1 1.2:. 6F10.2> 
RETURN 
END 
SUBRDUT INE GZRD (K.» ILI NE> 
DIMENSIDN ILINE <61> rISYM(3) 
DATA   ISYri<l> »ISYri<2>rISYri<3>/"   "t","f"*"s 
L^2 
IF^-J    1,2,1 
L=l 
DO  3   1=1T61 
ILINE<I>=ISYM<L> 
CONTINUE 
GO TO <5,8)rL 
DD 6 1=1,61,10 
ILINE<I>=ISYM<3> 
PRINT llrlLINE 
FDRMflT<6X,". . ",61fll,,,..M) 
RETURN 
END 
SUBROUTINE  SKPT<N,K,X,Y,YSCL»XMINrSCflLX»ILINE,L,R> 
DIMENSION   X<1> rY<l> rILINEC61) ,YSCL<21> ,ISYN<6> 
DATA   IBL, aSYM<I> ,I=1,6>/M   " , "V , "2" , ,,3M,"4", "5M, "f"..- 
DO   5   I=1,N 
IF <Y<I>-YSCL CK)-R>   2,2,5 
IF<YCI>-YSCL<K>-»-R>   5,5,4 
M= CX <D -XMIN> ^SCflLX-»-l. 5 
IF<M>   5^5,7 
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£47 0 1 

£43 0 O 
£49 0 9 
£5 00 
£510 3 
2520 5 
£53 0 
£54 0 
£550 
£56 0 
£570 
£53 0 
£590 61 
£6 0 0 pt 

£610 
£6£0 6 0 
£63 0 16 
£640 1£ 
£650 

UK 

IF<M-6i;)   6>6J5 
IF<ILINE<M>-IBL>   3»9»3 
ILIHE«::M:J=ISYMfL> 
ea TD 5 
ILINE<M>=sISYM<6> 
CDNTINUE 
RETURN 
END 
SUERDUTINE  TYPIT <K*YSCL»ILINE> 
DIMENSIDN  YSCL <21> »ILINE <SD 
._IS=K+4 
IF <J3-J3^5>5>   60y 61»60 
PRINT   3»YSCL<K> .'ILINE 
FDRMflT<F6.2f"+">lX>61fll>1X»"+I 
SQ  JU   12 
PRINT 16JILINE 
FDRMflT<6X»"-"^lX»61fll»lX>"-I") 
RETURN 
END 
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PROGRAM  SNOR2 

3LD:S,NaR2 

QK 
LIST 

i 

SNORE 15:44 ::HI ;:RT   in..'i4.-? 

1 0 0 
1 d 0 
13 0 
1 4 u 
150 
1 6 0 
19 0 
21 0 
£20 
d3 0 
24 0 
doO 
£60 
27 0 
23 0 
29 0 
3 0 0 
31 0 
32 0 
33 0 
540 
33 0 
33 0 
370 
33 0 
39 0 
392 
394 
3 9 6 
4 0 0 
410 
42 0 
425 
43 0 
4 55 
44 0 

SLIB'LIMEQT J f ♦■♦♦ 
iLIBrXmRMi. .■> .'♦♦•♦ 
tLIEjRRMDX.. a T*-**- 

DIMENSION   X<:21>»R<21,£1> ,flV<:£l> JSDCEI) >Z <£1> , C «:£0»£0^ I.B<20"J JECEO) 
DIMENSIOM  S<21>»P<21,2nyEM<21> JESD<£1>,ER<£1,£1> 
DIM 2 M SID M   W C 5 0 -. 21 > »T < 21 > 
K=£l 
KK=K-1 
ii=50 
RN=N 
Ll=XNORr'K-l.> 
CRLL   DPENF < 1» " CORR"':> 
RERDU ? 1>    <i=lV<D f 1 = 1. (O 

1 FDRMflT<£lF3.2> 
RERD<1TI::'   csn a::-. 1=1 JK::< 
DO   3   1 = 1 JIK 

RERD < 1 J 2>    <R •:: I r J) . J= 1 ^ K) 
2 F[3Rr-1RT(:21F3.2::' 
3 CONTINUE 

DO   25   1=1TK 
T a > = o. 
£SrKI>=0. 
DO 3 0 J=1TK 
P a J J:> = o. 

30 CONTINUE 
25 CONTINUE 

DO   1000   I = 1.-50 
U=XNDRM<0.> 

10 0 0   CONTINUE 
DO   5   1=1,N 
IF •;: I -21 >   3 0 0 f 4 0 0 f 4 05 

500   LF=1    ' 
GO   TO   3 05 

40 0   LF=2 
DO   5 00   .1=1,K. 
RV <J> =RV <J::' -2. 
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445 500 
447 
450 4 05 
455 5 05 
457 
453 
459 6 05 
46 0 3 05 
465 
47 0 
430 
49 0 
5 0 0 
5 1 0 
53 0 
53 0 
54 0 
55 0 
56 0 
5/0 
53 0 
53 0 
6-0 0 
61 0 
63 0 3 
63 0 t'1 

64 0 
650 
66 0 
67 0 9 
63 0 
690 
7 0 0 
710 
730 
73 0 
740 10 
75 0 
7 6 0 
77 0 
73 0 
79 0 
3 0 0 
310 6 
33 0 
33 0 
34 0 

CONTINUE 
GG   TO   3 05 
IF<I-41>   3 05? 5 05;-3 05 
LF=3 
nn 605 j-i:.;-: 
RV<.J>=fiVCJ>-2. 
CONTINUE 
U=XNaRM<0.) 
Z<.l':' =U 
xa>=ftva>+SDa)^za> 
wa» i>=xci> 
Ta;>=T':;i::'+xa::' 
ESD < 1 > =ESD >■. 1 ':■• +'A < 1 > *'A < 1 > 
U=KNaRH<0.) 
Z<2>=R<1 fZ") *Z<1> ^-U^SQRTCl.-Ra j3>>Rai.3>> 
X (2> =flV (2) +311 '::3> ♦Z <3> 
W <!*£> =X (2> 
T <3> -1 <.2':' +'A <2> 
ESD <3> =ESD <2'j +X <3> >X (3> 
DO   6   J=3»K 
JJ-J-1 
DO   7     L1-=1»JJ 
IiD   3   L3=li.JJ 
C<:Ll>L2>=R<Ll!>L2) 
CONTINUE 
CONTINUE 
DO  9  L1=1»JJ 
B<L1>=R<L1>J> 
E<L1>=B<LD 
CONTINUE 
CflL L   LINEQ O: r B fJJ 11 rKK> 
R3Q=0. 
H=0. 
DO   10   Ll=lrJJ 
H=H+B<L1>*2<L15 
RSG!=RSQ+B <L1> ♦€ <L1':> 
CONTINUE 
U=KNaRM<0.> 
Z <J> =H+U*-SQRT a . -RSQ> 
X < J;- =HV < J::- +SD CJ> >Z CJ> 
I'.KI fJ:> =X <J> 
T <J> =T <.J> +X CJ> 
ESD CJ> =E3D CJ> +X CJ> >X <.J> 
CONTINUE 
DO   66   L=1TK 
DO   67   J=ITK 

P-<L» J> =P <L f J> +X CL;1 ♦•X < J:> 
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13 U 

369 
87 0 
y 7 5 
33 0 
39 0 
9 0 0 
91 0 
92 0 
93 0 
94 0 
95 0 
96 0 
970 
93 0 
99 0 
1 0 0 0 
1 0 1 0 
1 03 0 
1 035 
1 0 3 0 
1 04 0 
1 05 0 
1 06 0 
107 0 
1 03 0 
1 035 
1 0 9 0 

67 CDNTINUE 
66 CONTINUE 

■ORITE <:2» 1 0CO    <U)<I» J> > J= 11.K? 
100   rDRMRT<7F3.2> 

WRITE<£»105>   LF 
105   FDRMHKIi::- 

5   CONTINUE 
CALL  CLOSEFO^RSCaRE") 
DO   7 0   I=1,K 
EM<I>=T<I) •'FIN 
v i = CHN »ESD a> -T a> ♦T a > > ••■• CAN*- caN-i. > -> 
ESD<I>=SQRT<VD 
DO   71   J=1,I 
9.i J = CRN••? a J J> -i a > n < j> > .-•■ <flN> CRN-I . >: 
ER Q J J:> =QI J-- CESD <.l':> ♦•ESD CJ> > 
ERCJJI I>=ER<I» J) 

71   CONTINUE 
7 0   CONTINUE 

PRINT   30r 
SO  FORMAT tiSXy"SAMPLE  MEANS   AND  STAND. DEV, 

!...lRITE<4!r35)    >::EMa.> j 1 = 1 »K> 
■•JRITE<4»S5>    <ESD<I) »I = 1»K> 

35   FORMAT <5X!.7F6. 3) 
CALL  CL0SEF<4r"SMNS,'.'J 
PRINT   90T 

9 0 FORMAT </r,5X»-MCORRELATIONS MATRIX" »^ 
DO 91 1=1»K 
WRITE   <3.»92)    CERa^J) rJ=l»fO 

93  craRMAT<8F10.7> 
91   CONTINUE 

CALL   CLOSER C3. "MHTRIX";- 
END 

OK 
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